
J. Parallel Distrib. Comput. 73 (2013) 595–607
Contents lists available at SciVerse ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Improved group-based cooperative caching scheme for mobile ad hoc
networks
I-Wei Ting, Yeim-Kuan Chang ∗

Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan

a r t i c l e i n f o

Article history:
Received 4 December 2010
Received in revised form
1 December 2012
Accepted 20 December 2012
Available online 3 January 2013

Keywords:
Mobile ad hoc networks
Cooperative caching
Multi-point relays

a b s t r a c t

Data caching is a popular technique that improves data accessibility in wired or wireless networks.
However, in mobile ad hoc networks, improvement in access latency and cache hit ratio may diminish
because of the mobility and limited cache space of mobile hosts (MHs). In this paper, an improved
cooperative caching scheme called group-based cooperative caching (GCC) is proposed to generalize and
enhance the performance of most group-based caching schemes. GCC allows MHs and their neighbors
to form a group, and exchange a bitmap data directory periodically used for proposed algorithms, such
as the process of data discovery, and cache placement and replacement. The goal is to reduce the access
latency of data requests and efficiently use available caching space among MH groups. Two optimization
techniques are also developed for GCC to reduce computation and communication overheads. The first
technique compresses the directories using an aggregate bitmap. The second employs multi-point relays
to develop a forwarding node selection scheme to reduce the number of broadcast messages inside the
group. Our simulation results show that the optimized GCC yields better results than existing cooperative
caching schemes in terms of cache hit ratio, access latency, and average hop count.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

Mobile ad hoc networks (MANETs) [15] comprise various mo-
bile devices called mobile hosts (MHs), such as notebooks, PDAs,
and cell phones. These MHs form a wireless data communication
network without the aid of any network infrastructure, such as ac-
cess points or base stations. Each MH can communicate with its
one-hop neighbors directly by broadcast messages, in which the
one-hop neighbors of an MH are within the transmission range of
its broadcast channel. Each MH can also freely move to any loca-
tion [5] and communicate with another MH using multi-hop wire-
less links at any given time.

In the last decade, studies in the area of wireless and mobile
networks have mainly focused on designing routing protocols [4]
for packet forwarding. These protocols create routing paths usu-
ally composed of multiple intermediate nodes between two com-
municating nodes. In addition, caching techniques are developed
to improve data accessibility. Caching is used to store recently ac-
cessed data based on the properties of temporal and spatial data
locality, or commonly interesting data that may be accessed by

∗ Corresponding author.
E-mail addresses: p7893113@mail.ncku.edu.tw (I.-W. Ting),

ykchang@mail.ncku.edu.tw (Y.-K. Chang).

0743-7315/$ – see front matter© 2013 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2012.12.013
numerous hosts. Caching has been successfully applied in the de-
sign of CPUs, multi-processors, and routers. It has also been em-
ployed in Internet-based technologies, such as the cache design
of the World Wide Web (WWW) [1], proxy caches [24], Internet
Cache Protocol [26] for proxy servers, cache digests [22] and sum-
mary caches [12], and various distributed systems, with the pur-
pose of reducing data access delays. Furthermore, several caching
nodes can also work together to form a cooperative caching envi-
ronment, further improving the overall caching performance.

Designing an efficient cooperative caching scheme that consid-
ers essential factors such as mobility, battery power, and limited
wireless bandwidth is a challenge for MANETs, for the following
reasons. First, the caches of some MHs may become unavailable
when they are shut down because of power shortage, or switched
to sleep mode to save power. The caches of MHs that are turned
off must be cleared because they are unaware of possible data up-
dates, even once they rejoin the network. Second, the cache space
of an MH is usually much smaller than that of the total data set in
the network. A better cooperative caching scheme is required to
efficiently use the caches of all MHs. Third, if the cache of an MH is
shared by a large number of other MHs, the cache space may be-
come full and the battery power of thisMHmay be quickly drained.
Existing proposed cooperative caching protocols consider different
aspects including the deployment of query directory nodes [2] and
application managers [16], cache placement and replacement [6,7,
9,17,23,27,28], replication of data objects [10,13,14], redirection of

http://dx.doi.org/10.1016/j.jpdc.2012.12.013
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.jpdc.2012.12.013&domain=pdf
mailto:p7893113@mail.ncku.edu.tw
mailto:ykchang@mail.ncku.edu.tw
http://dx.doi.org/10.1016/j.jpdc.2012.12.013


596 I.-W. Ting, Y.-K. Chang / J. Parallel Distrib. Comput. 73 (2013) 595–607
data requests [8,7,19,27,28], and utilization of the caching space of
neighboring MHs [9].

In this paper, the proposed group-based cooperative caching
scheme (GCC) is based on the concept of group caching as in the
many existing caching algorithms stated earlier. GCC allows each
MH and its k-hop neighbors to form a group, instead of only 1-hop
neighbors forming a group, as described in previous work [25]. A
directory of cached data items is maintained in each node. Each
MH obtains the directories of its k-hop group members through
broadcasts in the group. As a result, each MH knows whether the
requested data object is cached in its group. The requestingMH can
avoid the search overhead of global flooding when one of the group
members caches the requested data.

Cache placement and replacement are also important issues
that affect the cache hit ratio in cooperative caches. Numerous
studies on wired or wireless networks consider different param-
eters such as data object size, access frequency, and latency. How-
ever, most of these do not consider caching data status and node
mobility when performing cache replacement. In ad hoc networks,
if MHs connect to the networks, their caches cannot be used im-
mediately, and the overall caching utilization decreases. Therefore,
GCC employs efficient cache placement and replacement policies
to consider the available caching space and node mobility for im-
proving data accessibility in a group. The cache hit ratio in the
group can be increased and the average search latency can be re-
duced significantly. GCC is also optimized by a hierarchical bitmap
scheme and an efficient forwarding node selection scheme based
on multi-point relay (MPR) [21] to reduce the computation and
communication overheads. The aggregate bitmap can reduce the
memory requirement for the stored directories, and the forward-
ing node selection scheme can reduce the number of broadcasts. In
summary, the contributions of this paper are as follows.

1. The development of a group-based cooperative caching scheme
generalizes the existing zone or group-based caching schemes
that fully exploit broadcasts in the group to effectively enhance
data accessibility in MANETs.

2. Data placement and replacement algorithms, including mobil-
ity and timestamp factors, are proposed to efficiently utilize the
caches and improve data accessibility in the group.

3. Two optimizations are proposed to reduce the computation and
communication overheads.

4. Prevalent existing cooperative caching schemes are evaluated
and compared.

The rest of the paper is organized as follows. Section 2 presents
a review of related work in MANETs. The proposed GCC scheme
is explained in Section 3. Section 4 presents the optimized GCC
scheme using the proposed hierarchical bitmap and forwarding
node selection schemes. Section 5 shows the simulation results
of GCC, compared with those of existing cooperative caching
schemes. The conclusion is presented in Section 6.

2. Related work

The original data request-and-response model in MANETs is
similar to the traditional client–server model in wired networks.
Because nodes inMANETs freelymove, the routing protocol usually
broadcasts the route discovery messages (i.e., message flooding)
to find the routing path from the source node to the destination
node (or data source). The routing path is easily broken when
the intermediate nodes move out of the transmission range of
upstream or downstream nodes on the routing path. Thus, the
source node or an intermediate node needs to rebroadcast the
route discovery messages to reconstruct the routing path. The
route discovery messages are received and processed by all nodes;
therefore, the communication overhead is significantly high [18].
The average hop count and latency of data accesses are affected
mainly by the node transmission range, node movement speed,
and node density of the networks. If the transmission range is
high, the hop count to the data source is smaller but the energy
consumption is higher. In an environment containing no cache, the
routing protocol plays a major efficient data communication role
in MANETs. Several caching schemes that are closely related to the
proposed GCC are reviewed as follows.

The SimpleCache scheme is similar to the client cache of the
traditional client–server model in wired networks. When a data
request is generated, the source node first searches its local cache
to check if the requested data is cached (cache hit) or not (cache
miss). If there is a cache hit, the requested data can be served
locally. Otherwise, the data request is sent to the data source and
waits for a response. SimpleCache does not consider nodemobility,
battery power, and limited wireless bandwidth that differentiate
the MANET from the wired network. The nodes in SimpleCache do
not use the cache space available in their neighbors or any other
nodes.

The CacheData [27,28] scheme caches the requested data at
intermediate nodes on the routing path between the source
node and the data source. Any intermediate node caches popular
passing data and is responsible for serving the request. When an
intermediate node receives the data request, the local cache is
lookedup. If there is a cachehit, the cacheddata in the intermediate
node is replied to the source node. CacheData is similar to the
proxy servers sitting between the client and original server of the
traditionalWWWclient–servermodel on the Internet. Because the
intermediate nodes are closer to the source node than the data
source is, access delay is reduced. In the CachePath scheme, the
intermediate nodes are allowed to record only the distance (hop
count) between the data source and source node provided by the
routing protocol. Thus, when the data request is received in the
intermediate nodes, the nodes can redirect the data request to the
caching node if they find that the distance to the caching node is
less than the distance of the data source from the source node.

In the NeighborCaching (NC) scheme [9], nodes use the caches
of their 1-hop neighbors to store the data evicted by the cache
replacement algorithm. The ranking threshold of a node is defined
as the time value of the kth recently used data in the node, where k
is a predefined number; all the nodes possess identical k numbers.
When a source node evicts data to accommodate newly requested
data, it attempts to select one of its 1-hop neighbors to store the
evicted data as follows. The source node discards the evicted data
if the ranking thresholds of all its 1-hop neighbors are not earlier
than its ranking threshold. Otherwise, the neighbor that has the
earliest ranking threshold is selected to store the evicted data.
Then, the source node has to negotiate with the selected node to
make sure its ranking threshold is not earlier than the selected
node because the ranking information maintained in the source
node may be old. If the ranking threshold of the selected node
is not earlier than that of the source node, the 1-hop neighbor
with the second earliest ranking threshold is selected and the
same negotiation process is performed. The source node records
the selected neighbor that stores the data evicted from its cache.
Therefore, if the source node later requires the data that is cached
in its neighbors, it can directly obtain the data from the neighbor
caching the data.

The ZoneCooperative (ZC) cache scheme [7] is similar to
CacheData in that the caches of the intermediate nodes on the
routing path are also searched to find the requested data. However,
the difference between ZC and CacheData lies in the manner by
which the caches of the 1-hop neighbors of the intermediate nodes
are searched. A cost function based on data popularity, distance
between the requesting node and the caching node, time-to-live
(TTL) values, and data size is developed for cache replacement. The



I.-W. Ting, Y.-K. Chang / J. Parallel Distrib. Comput. 73 (2013) 595–607 597
evicted data by the replacement algorithm in one node cannot be
stored in its 1-hop neighbors for reuse.

The Cooperative and Adaptive Caching System (COACS) [2] is
similar to CachePath in that the path information of data in the
caching nodes is cached in a predetermined number of nodes
called query directory (QD) servers. QDs are the nodes that have the
highest scores that summarize their resource capabilities, such as
expected lifetime, battery life, available bandwidth, and available
memory. The complete list of QDs is broadcast to all the nodes in
the network. When a node requires a specific data, the nearest QD
is first queried to check if it caches the path of the caching node
that caches the requested data. If the nearest QD does not have
a matching path, then the second nearest QD is queried until a
matching path is found, or until all the QDs are exhausted. If a QD
has the matching path of the caching node, it forwards the request
to the caching node which, in turn, returns the requested data to
the requester. However, if no QD contains the matching path, the
requester is acknowledged and then the data is obtained from the
data source. When receiving the data, the requester will notify the
nearest query directory to update the path of the caching node for
future queries.

The Data Pull/Index Push (DPIP) scheme [8] is similar to the ZC
scheme, but it only allows the caching nodes to broadcast the index
of the cached data in the zone (1-hop neighbors). When a node on
the routing path receives the index packet, it knows which data is
cached, as well as which caching nodes the data originated from.
If a node finds that the requested data is in the zone (a zone hit)
by examining the recorded index, it broadcasts the data request in
the zone. Otherwise, data pull is performedby sending the data pull
packets in the zone. The nodes receiving the data pull packets also
check whether their 1-hop neighbors have the requested data. If
the requested data is found in a node, the data request is redirected
to that node. If no response is replied, the data request is sent to the
next intermediate node toward the data source. In general, DPIP
performs data recovery in the zone containing the 1-hop and 2-
hop neighbors of the requesting node.

Table 1 summarizes the differences of all schemes. The third
column shows the nodes that are looked up for requested data,
excluding the source and destination nodes. The fourth column
shows the actions taken by the nodes receiving the requests. In
SimpleCache and NC, intermediate nodes on the routing path do
nothing but forward the requests to the destination. In CacheData,
CachePath, ZC, and the proposed GCC, only the intermediate nodes
on the routing path receive and process the requests. In COACS,
query directories redirect the requests to the caching nodes if a
matching path is found and the caching nodes return the requested
data to the requester. In DPIP, the request can be processed by 1-
hop and 2-hop neighbors of the requesting node by sending the
data pull packets. The last column shows the nodes that perform
cache placement and replacement algorithms.

3. The proposed group-based cooperative caching scheme

3.1. Assumption and definition

Each MH has a unique ID which may be its unique host ID or
IP address. ‘‘Hello’’ messages sent periodically as Keep-Alive signals
are used to maintain the connectivity of the network. With ‘‘Hello’’
messages, each MH knows which nodes are its neighbors or k-
hop neighbors. The one-hop neighbors of an MH are the nodes
within its transmission range. MHs can obtain the k-hop neighbor
information by ‘‘piggybacking’’ onto the (k − 1)-hop neighbor
information in ‘‘Hello’’ messages.

A k-group of a node x and k-group(x) are the set of nodes that are
at most k hops away from node x. In the GCC scheme, eachMH and
its k-hop neighbors form a group in which k can be set empirically.
Fig. 1. Data discovery process.

In general, when the group size k is large, the communication
overhead is high. However, a high remote cache hit ratio can be
obtained with a large k because MHs can recognize the caching
information of a large number of neighbors in the group.

3.2. Maintaining a directory using a bitmap

Two bitmaps, self_bitmap and group_bitmap, are maintained for
each MH. The length of the bitmap is equal to the number of
data objects in the network. Thus, bit i of the bitmap is mapped
to theith data object. When an MH caches a data object, the
corresponding bit of its self_bitmap is set. Each MH periodically
broadcasts its self_bitmap along with the information about its
available caching space and the oldest timestamp of its cached data
objects to its group members. The available caching space and the
oldest timestamp are needed in cache placement and replacement
algorithms, described later. When an MH receives self_bitmaps
from all its group members, it will merge them into group_bitmap.
By examining the group_bitmap corresponding to the requested
data, a requesting node immediately knows if the requested data
is cached in the group. Then, data discovery can be accomplished
using broadcasting inside the group.

AlthoughGCCadopts a ‘‘stateful’’mechanism, only bitmap infor-
mation is recorded and transmitted. Exchanging bitmaps in a group
only consumes a small amount of communication bandwidth. Gen-
erally, the size of bitmap information is significantly smaller than
the size of the data object. Thus, the control overhead is insignifi-
cant. The main benefit is being able to save memory and commu-
nication bandwidth.

3.3. Data discovery process

When receiving a request, the node first searches its cache
for the requested data. If the requested data is not found locally,
a special request called request_in_group is broadcast inside the
group of the node. The MPR [21] protocol is used to broadcast
request_in_group messages in the group. If the requested data is
still not found, the request is forwarded to the next node on the
routing path to continue the data discovery process. Fig. 1 shows
the detailed algorithm for processing a request for data dv in the
intermediate node MH j. Lines 1 and 2 deal with the simple case in
whichMH j is either the home of the requested data or has a copy of
the data in its cache. Lines 3–8 perform the data discovery process
inside the group of MH j if the vth bit of group_bitmap is set, that
is, the requested data is cached in one of the ≠group members of
MH j. IfMH j receives the response containing dv before time-out, it
sends the data back toMH j−1. The response is eventually sent back
along the reversed routing path to the requester. If no response
containing dv is returned before time-out, the routing pathmust be
created first if the current node is the source node and the request
is then forwarded to the next node on the routing path to continue
the data discovery process.

Fig. 2 shows the algorithm for a node MH i in the group to
process the request_in_groupmessage sent fromMH i−1. The group



598 I.-W. Ting, Y.-K. Chang / J. Parallel Distrib. Comput. 73 (2013) 595–607
Table 1
Comparisons of various cooperative caching schemes.

Scheme Feature
Local cache
hit

Nodes that are searched in data
discovery process excluding source
and destination nodes

Actions taken by the nodes
receiving a data request

Remote
cache hit

Nodes performing cache
placement and replacement

NoCache No None None No No
Simple Cache Yes None None No Source node
CacheData Yes Intermediate nodes Reply if cache hit in the

intermediate nodes
Yes Source node and intermediate

nodes
CachePath Yes Intermediate nodes and other

nearby caching nodes indicated by
the path information

Reply if cache hit in the
intermediate node or redirect the
request to the caching node

Yes Source node and intermediate
nodes, but only the path
information is cached

NC Yes The 1-hop neighbors of source node None Yes Source node and its 1-hop
neighbors

ZC Yes Zone (1-hop) neighbors of source
node and intermediate nodes

Reply if zone cache hit in the 1-hop
neighbors of source node and
intermediate nodes

Yes Source node

COACS Yes Caching nodes indexed by the path
information stored in the query
directory nodes

Forward the request to caching
node if hit in current or next query
directory node

Yes Source node

DPIP Yes Zone (1-hop and 2-hop) neighbors
of source and intermediate nodes

Reply if zone cache hit in the (1 or
2-hop) neighbors of source and
intermediate nodes

Yes Source node and intermediate
nodes

The proposed
GCC

Yes k-group members of the source
node and intermediate nodes

Reply if k-group cache hit or
forward the request to next
intermediate node

Yes k-group members of the source
node and intermediate nodes
on the routing path
Fig. 2. Data discovery process in the group.

of a node is assumed to be a k-group that consists all i-hop
neighbors for i ≤ k. Thus, to confine the request_in_groupmessages
to the group, the time-to-live hop count (ttl-hop-count) is set to k.
Line 1 checks if the same message has not been received before.
If MH i has cached the requested data dv , or MH i is the home of
dv , it immediately sends dv to MH i−1. Otherwise, ttl-hop-count
is decremented by one. If ttl-hop-count is not zero and MH i is a
forwarding node based onMPR,MH i forwards the request_in_group
message to the 1-hop neighbors of MH i and waits for response. If
the response containing data dv comes back before time-out, it is
returned back toMH i−1.

Fig. 3 shows an example of node S requesting the data originally
owned by node MHn based on the 2-group. Node s first searches
2-group(S). If the requested data is not found, the routing path
between the source node S and destination node MHn is created.
Assuming that the intermediate nodes on the routing path are
MH1, . . . ,MHn−−1, the request is then passed to MH1 which
searches its 2-group(MH1) for the data. This data recovery process
is repeated on the intermediate nodes along the routing path until
the requested data is found or the request reaches the destination
node MHn.

3.4. Cache placement and replacement algorithm

The detailed algorithm in Fig. 4 shows how and where to place
the data contained in the response received by the intermediate
node (say MH j). In line 1, MH j starts to search itsself_bitmap and
group_bitmap to check if the received data object dv has been
Fig. 3. Data discovery process initiated from source node s for the data owned by
destination nodeMHn using the proposed GCC with 2-hop groups.

Fig. 4. Placement and replacement after receiving the response.

cached in the group. If yes, dv will not be cached in MH j to reduce
the degree of cached data redundancy in the group. Otherwise, if
the free cache space is large enough to hold dv , MH j caches dv . If
the free cache space is not large enough to hold dv as in line 5,MH j
performs the well-known least recently used (LRU) replacement
to cache dv and removes the least recently used data first, say dr .
Then, in lines 7–9, dr is stored in the most ‘‘stable’’ group member
(defined later) if the available cache space of the group member
is sufficient to store dr . The objective is to allow MH j to quickly
retrieve the replaced data later.



I.-W. Ting, Y.-K. Chang / J. Parallel Distrib. Comput. 73 (2013) 595–607 599
For node MH j, we say that a node MHm is more stable than
another nodeMHn whenMH j receivesmore ‘‘Hello’’ messages from
MHm than from MHn in a fixed period of time. For example, MH j
receives three, seven, and six ‘‘Hello’’ messages from MHk, MHm,
and MHn in a period, respectively. Therefore, MHm is more stable
for MH j than MHk and MHn. Higher stability between two nodes
indicates that the connection between them is not expected to
break down. Selecting stable nodes for storing replaced data can
minimize the negative impacts of nodemobility and disconnection
and thus improve data accessibility. If two or more nodes become
the most stable group members, we break the tie by selecting the
closer nodes. Also, if two or more nodes are the most stable and
closest group members, the node that has the largest available
caching space is selected.

A simple mechanism to determine the degree of node stability
is explained as follows. Each MH uses counters for each group
member. When the MH receives and recognizes a ‘‘Hello’’ message
from one of its group members, the corresponding counter is
increased by one. MHs may move in or out of the transmission
range area of the groupmembers. Therefore, MHs receive different
numbers of ‘‘Hello’’ messages from their group members in a
period. Thus, when anMHneeds the stable groupmember to cache
the replaced data, it selects the member with the largest counter.

IfMH j and all its groupmembers do not have sufficient space to
cache the received data as in lines 11–14, LRU is performed byMH j.
The timestamp tr retrieved from the replaced data is compared
with the recorded timestamp piggybacked in the ‘‘Hello’’ messages
from the stable group members. If tr is the oldest, dr is removed.
Otherwise, dr is stored in the stable group member that owns
the oldest timestamp. When the node receives dr from MH j, it
repeatedly removes the oldest cacheddata to increase the available
cache spaceuntil the receiveddata object canbe cached. If no group
member is considered to be stable, dr is removed directly.

Generally, the local hit ratio increases as the cache size
increases. However, in GCC, the replaced data is first moved to the
group members that have the available caching space. Thus, when
a node joins the network, its caching space is used by other nodes.
Thismethod improves the local hit ratio of the newly joining nodes.

3.5. Mobility effect

GCC enables the requesting node to answer ‘‘the requested data
is cached or not cached in the groupmembers’’, in which themobility
is considered in a seamless manner. Such information of group
members minimizes the negative impacts of node mobility. If the
group member that has the requested data moves away from the
group, the information may still be valid, because it is possible
that any one of the group members may have another copy of the
requested data. In addition, the newly proposed cache replacement
algorithm also considers the mobility of group members.

A group search in a node is considered a hit if one of the group
members of the node caches and replies to the data requested. If
the source node or any intermediate node encounters a local cache
miss and determines that the bit in group_bitmap corresponding
to the requested data is set, it starts a search in its group.
However, because nodes maymove away from a group, or become
disconnected from the network after shutdown, the node that
initiates the group search may not be able to obtain the requested
data from its group members. Three factors namely node speed,
group size, and the self_bitmap update interval affect the group
search hit ratio. When the node mobility is high, some group
members may move out of the group before the group_bitmap
is updated. When the group size is large, the node has a high
probability of acquiring the response from its group members.
When the bitmap update interval is short, the group_bitmap
maintained in each node will almost always be valid. However,
the communication overhead will be increased due to frequent
broadcasts of self_bitmap. The effect of node mobility on the group
hit ratio is evaluated in Section 5.
3.6. Cache consistency issue

When the data objects are updated in the data sources, the
cached copies in the caching nodes may become inconsistent.
Therefore, weak consistency and strong consistency are two models
that are usually applied to maintain data consistency. Under
the weak consistency model, a cached copy of a data object
is associated with the time-to-live (TTL) attribute. The cached
data object is declared invalid by the caching nodes if its TTL
expires. Weak consistency is simple and does not cause much
communication overhead for maintaining data consistency. Under
strong consistency, the caching nodemust check the consistency of
the requested data with the data source before a cached copy can
be returned to the requesting nodes. The main drawback of strong
consistency is that the querymessage needs to be broadcast to find
the data source, and, as a result, a heavy communication overhead
occurs. In GCC, the weak consistency model is used because it
consumes low energy and wireless bandwidth.

4. Optimized GCC

In this section, an aggregate bitmap scheme and the forwarding
node selection are proposed to speed up the search in the directory
and reduce the memory usage and communication overhead
needed in GCC.

4.1. Aggregate bitmap

In the network containingND data objects, each nodemaintains
an ND-bit self_bitmap to record which data objects are cached. The
ith bit of self_bitmap is set to 1 if the node caches the ith data object
for i = 0 . . .ND − 1. Because the number of data objects that can
be cached in a node is much smaller than ND, self_bitmap will be
a sparse bitmap. In other words, only a small number of bits in
self_bitmap are set to 1 and the other bits are set to 0. To reduce the
memory usage of self_bitmap and thus reduce the bandwidth usage
for transmitting it over the network, a scheme called aggregate
bitmap that aggregates a block of bits into one bit is proposed. In
the aggregate bitmapwith aggregate size k, k bits are collapsed into
a single bit if at least one of these k bits is originally set to 1.

Fig. 5(a) shows an example of a 512-bit bitmap and the
corresponding aggregate bitmap with the aggregate size of 8 bits.
Assume that the ten set bits in the original bitmap are bits 73, 78,
120, 290, 291, 292, 390, 422, 423, and 424. First, all data with IDs
0–63 of the original bitmap are not set. Thus, the first bit of level
0 in aggregate bitmap is not set because 64 bits are aggregated in
one bit. Second, several of data with IDs 64–127 are set (73, 78,
and 120). Thus, the second bit of level 0 is set. As a result, each
bit in level 0 could be set based on the original bitmap. Three
blocks in level 1 are also induced from the number of set bits
in level 0. The procedure of each bit setting in each block from
the level 1 is performed as level 0 but only 8 bits are aggregated
in one bit. For example in Fig. 5(b), the second bit of the first
block in level 1 is set because any one of bits 64–71 are set in
original bitmap. The blocks of level 2 are also induced from the
bit set in each block from level 1. Finally, based on the number of
blocks in each level, we are able to know which data is cached and
reconstruct the original bitmap. The resulting aggregate bitmap
consists of ten 8-bit blocks as shown in Fig. 5(b). Three additional
values are required to complete the aggregate bitmap. The first
value is the aggregate size. The second is the total number of
blocks in the aggregate bitmap, which is 10 in the example of
Fig. 5. The third value is the base index of the non-bottom-level
blocks. Notice that the base index for the only block in level 0 is
always 1. In Fig. 5(c), the base indices of the three blocks in level
1 are 4, 6, and 7. These additional values are stored into a data



600 I.-W. Ting, Y.-K. Chang / J. Parallel Distrib. Comput. 73 (2013) 595–607
(a) Original 512-bit bitmap. (b) Array of 8-bit blocks in aggregate bitmap denoted as
B[0 . . . 9].

(c) Aggregate bitmap header including the
block size, number of blocks, and the array of
base indices pointing to a block in level i + 1
from a block in level i.

Fig. 5. Bitmap with ten set bits and corresponding aggregate 3-3-3 bitmap.
Fig. 6. Constructing the aggregate bitmap.

structure called header. The data objects recorded in each node
are different; thus, each node can select the best aggregate size to
construct a smaller aggregate bitmap. The detailed algorithm for
constructing an aggregate bitmap is shown in Fig. 6. The algorithm
denotes the set


p00 · · · p0i−1, . . . , p

yi−1
0 · · · pyi−1

i−1


of size yi as the one

after the redundant elements in

b00 · · · b0i−1, · · · , b

n−1
0 · · · bn−1

i−1


are

removed. For example, an MH computes y1 = 3 and y1 = 6,
and the total number of 8-bit blocks is 10 in the example of
aggregate size 8 in Fig. 5. Line 1 computes the total number of
blocks needed (say, t) and allocates t blocks as B[0 . . . t − 1]. In
lines 2–3, the pointer of the current block 0 (i.e., B[cur_blk]) is
set to block 1 (num_of_blks). In line 4, bits p00 to py1−1

0 in B [1]
are set to 1. In lines 6–14, the bit patterns of blocks in the non-
bottom levels are set in a top-down fashion. There are two for
loops. The outer for loop repeats for non-bottom levels. The inner
for loop repeats for all the blocks in each level. There are yi blocks
in level i and thus, the inner loop repeats yi times for each distinct
element f in


p00 · · · p0i−1, . . . , p

yi−1
0 · · · pyi−1

i−1


. In lines 9–11, the

subset

p00 · · · p0i , . . . , p

yi+1−1
0 · · · pyi+1−1

i


with the same prefix f is

denoted as

fq0i , . . . , fq

zi−1
i


and the bits q0i to qzi−1

i in the current
block (B[cur_blk]) are enabled. Finally, if the current block is not
in the bottom level, its pointer is set according to the size of
fq0i , . . . , fq

zi−1
i


.

Fig. 7 shows the search process for determining if data object
id is recorded in the aggregate bitmap of an MH. To simplify the
presentation, the algorithm assumes that the size of the original
bitmap is L = kd and the aggregate size is k. The function
Aggregate_bitmap_search(B, id) is given in Fig. 7, inwhich the data id
is represented as a string of d base-k numbers, that is, b0b1 . . . bd−1.
Fig. 7. Searching for a data object in the aggregate bitmap.

Fig. 8. Procedure for merging two aggregate bitmaps.

Fig. 9. Forwarding node selection scheme.

Fig. 10. Concept of forwarding node selection scheme in the group (k = 3).

The base-k number bi is used to search the blocks in level i of the
aggregate bitmap. Because each node receives all the self_bitmaps



I.-W. Ting, Y.-K. Chang / J. Parallel Distrib. Comput. 73 (2013) 595–607 601
Fig. 11. Communication overhead in terms of latency increasing ratio.
from its neighboring nodes, the nodes merge the self_bitmaps into
one to make the lookup operations efficient. The merge procedure
is shown in Fig. 8. Themerge operation of two aggregate bitmaps is
done as follows. First, each aggregate bitmap is converted into the
set of original data IDs in the format of a string of base-k numbers.
The bases of the numbers in these two aggregate bitmaps can be
different. Next, these two sets of original data IDs are merged.
Finally, the procedure Construct_aggregate_bitmap(S) is called to
create the merged aggregate bitmap.

Note that the aggregate bitmap is a deterministic scheme.
Non-deterministic schemes, such as hashing or a bloom filter can
also achieve the same goal. If the non-deterministic scheme is
developed, the issues of selecting the hash function, collisions, and
false positives need to be addressed.

4.2. Forwarding node selection scheme

In addition to the aggregate bitmap, the forwarding node
selection scheme based on MPR [21] can also be used to reduce
the overhead of the broadcast operations in the group. MPR avoids
using all the nodes in the network to perform the broadcast
operations. In other words, only a subset of nodes is selected
as the forwarding nodes that are responsible for transmitting the
broadcastmessages to their neighbors. Non-forwarding nodes only
passively receive the broadcast messages. By using the ‘‘Hello’’
messages, each node collects the 1-hop neighbor lists of all its 1-
hop neighbors to form its 2-hop neighbors. MPR uses a greedy
selection algorithm to select the forwarding nodes (or called MPR
nodes) that cover all the 2-hop neighbors. Each node receives not
only the broadcast message, but also the directive to determine
if it will act as the forwarding or non-forwarding node. Every
forwarding node also runs the selection algorithm to select some
of its 1-hop neighbors to be the forwarding nodes for transmitting
the broadcast messages in the network.

The original MPR is a source-dependent algorithm that selects
a subset of the 1-hop neighbors to fully cover all the 2-hop
neighbors. The broadcast messages are sent to all 2-hop neighbors
by way of the selected 1-hop forwarding nodes. Now, consider the
proposed forwarding node selection scheme in the data discovery
phase. We assume that k = 2. When we perform the forwarding
node selection algorithm, not all but only a small subset of 2-
hop neighbors toward the destination node need to be covered by
the selected forwarding nodes. Thus, the communication overhead
can be reduced because fewer nodes act as the forwarding nodes.
The proposed MPR-based forwarding node selection algorithm for
the source node and the intermediate nodes shown in Fig. 9 is
described as follows.

For source node S, the broadcast messages have to reach all the
nodes in its k-group. Let MPRj(S) be the set of forwarding nodes
that are j hops from source node S for j = 1 to k−1. The procedure
for computingMPRj(S) for j = k−1 to 1 is shown in Fig. 9 by setting
z = S and G(z) = k-hop(S). Lines 2–5 perform the initialization
for the target set (TSet), candidate set (CSet), and MPRj(S). Let
CSet = {y1, . . . , y|CSet|}, where |CSet| is the size of CSet. In the
while loop, we first compute the covered set of yi denoted by T (yi)
which includes the nodes TSet that are covered by yi. The size of
T (y) is denoted by |T (y)|. Then, we select xmax in CSet such that
|T (xmax)| ≥ |T (yi)| for any other node yi in CSet. For two nodes
yi and yj in CSet, if |T (yi)| = |T (yj)| and i < j, yi is selected first.
Finally, in lines 12–14, xmax is added in MPRj(S), xmax is removed
from CSet, and the nodes in T (xmax) are removed from TSet. After
the above process, if TSet becomes empty, the process to compute
MPRj(S) is done. Otherwise, the while loop continues.

For any intermediate node MH i on the routing path, MH i only
has to forward the broadcast messages to the nodes that are in the
k-group of MH i, but not in k-group of MH i−1, which is denoted
by G(MH i) = k-hop(MH i) − k-hop(MH i−1). Since the i-hop
members of MH i for i = 1 to k − 1 have been reached when
MH i−1 performed group search, G(MH i) only includes some of its
k-hop group members. Therefore, the procedure for computing
MPRi(MH i) is similar to that for source nodes except that the target
set is G(MH i) instead of k-hop(MH i). As a result, we execute the
algorithm in Fig. 9 by setting z = MH i and G(z) = G(MH i).
Consider the example in Fig. 10. MH1 only needs to select the
nodes that cover A, B, C , D, E, F , and MH4, instead of all the 3-hop
neighbors of MH1. Thus, only nodes a, b, c , d, e, MH2, and MH3 are
selected as the forwarding nodes.

5. Performance evaluation

This section presents the simulation results of the proposedGCC
scheme that is compared with SimpleCache, CachePath [27,28],
CacheData [27,28], NC [9], ZC [7], COACS [2], and DPIP [8]. The
simulation model and environment are first given as follows.

5.1. The simulation model and environment

The experiments are conducted on Network Simulator (NS2)
[11] with the CMU wireless and mobility extension. IEEE 802.11
protocol is used as the basis in the MAC layer. The well-known
ad hoc on-demand distance vector routing protocol [20] is used as
the underlying routing algorithm. The network contains 100 nodes
that are randomly distributed over the 1500m× 1500m area. The
moving pattern of nodes follows the random way point mobility
model. Initially, nodes are placed randomly in the network. Each
node randomly selects a destination andmoves toward it at a speed
of 0–2 m/s, also selected randomly. After the node reaches the
destination, it pauses for 300 s and repeats the moving pattern.



602 I.-W. Ting, Y.-K. Chang / J. Parallel Distrib. Comput. 73 (2013) 595–607
(a) GCC with k = 1. (b) GCC with k = 2. (c) GCC with k = 3.

Fig. 12. Group search hit ratios with different node speed and bitmap update interval.
Fig. 13. Cache hit ratios under different cache sizes, 600–3000 KB.
Because of the dynamic property ofMANETs, the behavior of nodes
joining and leaving the network is simulated by changing the node
join/leave rates in the range 0.05–0.4 nodes/s. The rate is defined
as the number of nodes excluding data sources randomly joining
or leaving the network every second. If an MH joins or leaves the
network, its cache content is cleared. The detailed parameters are
shown in Table 2. In the simulation environment, we assume that
the data sources are powerful devices compared with MHs. Thus,
the data source does not usually switch to wakeup/sleep mode for
saving energy. Also, in the battlefield, an officer in a car carries the
data source containing information about everything. The soldiers
usually need to obtain information from the data source to help
determining the next action, so the data sources can be mobile.

Five data sources (servers) are placed in the network. The data
sources can also move arbitrarily in the network at a speed of
0–2m/s. In the network, there are 4,000 original data items of fixed
size 20 KB that are uniformly distributed among them. Therefore,
each data source owns 800 data items. When the data source
receives a data request from the source node, the first-come-first-
served policy is applied.

The cache size in each MH is set to 600–3000 KB. In other
words, a node can cache 0.75–3.75% of the data items. In the
simulation, each pair of source node and data source is selected
randomly. A node is randomly selected as the query client whose
query rate is set to 0.05 to 1 queries/s. The query pattern for the
data object is based on a Zipf-like distribution [3]. In the Zipf-
like distribution, which has been frequently used to model a non-
uniform distribution, the access probability of the ith (0 5 i 5 n)
data item is represented as follows:

Pi =
1

iθ
n

k=1

1
kθ

, where 0 5 θ 5 1.
Table 2
Simulation parameters.

Parameter Default value Range

Simulator NS2
Network size 1500 m × 1500 m
Bandwidth (MB/s) 2
Number of mobile hosts 100
Transmission range (m) 200
Cache size SC (KB) 600 600–3000
MH join/leave rate (1/s) 0 0.05–0.4
Number of data sources 5
MH speed (m/s) 0–2 randomly 3–15
Total number of data items 4000
Size of each data item (KB) 20
Zipf parameter (θ ) 0.8 0–1
Mobility model Random way point
Pause time (s) 300
k-group size for GCC scheme k = 1–3
Bitmap update interval (s) 80 5–80
Query rate (s) 0.2 0.05–1
TTL (s) 1000 100–2000

When θ = 1, it follows the strict Zipf distribution. When
θ = 0, it follows the uniform distribution. Larger θ results in a
more ‘‘skewed’’ access distribution. The simulation time is 1500 s.
Thus, in total, 1000–30,000 queries (experiments) are measured.
For each experiment, a sufficient number of simulation results is
obtained and averaged to provide a 90% confidence interval within
±5%.

5.2. Simulation results

5.2.1. Memory usage
In GCC, only a ‘‘Hello’’ packet is used to exchange information

among the group members. The packet size depends on the k-hop
neighbors and the number of data IDs in the networks.



I.-W. Ting, Y.-K. Chang / J. Parallel Distrib. Comput. 73 (2013) 595–607 603
Fig. 14. Cache hit ratios with 600 KB cache and different join/leave rates.
Fig. 15. Average hop counts under caches of size 600–3000 KB.
Table 3
Memory usage in aggregate bitmap scheme with block = 8 bits.

Cache size (KB) 600 1200 1800 2400 3000

# of data items cached in an MH 30 60 90 120 150

# of blocks in level 1 1

# of blocks in level 2 8 8 8 8 8

# of blocks in level 3 27 43 52 55 58

# of blocks in level 4 30 57 81 106 129

# of blocks in an aggregate bitmap 66 109 142 170 196

Memory usage for all blocks (bits) 528 872 1136 1360 1568

Memory usage for all indices (bits) 350 510 600 630 640

Aggregate bitmap scheme 878 1382 1736 1990 2208Total memory usage (bits)

Original bitmap scheme 4000Total memory usage (bits)

Memory saved (%) 78 65 56 50 44
The operation of create/search/combine on aggregate bitmaps
is simple and easy to implement. However, the memory usage
needs to be evaluated because the communication overhead is
induced by the size of the aggregate bitmap piggyback in the
‘‘Hello’’ packets. Table 3 shows thememory usages of the aggregate
bitmap and the original bitmap without compression. An original
bitmap needs 4000 bits for the data set of 4000 data items. The
number of bits needed for an aggregate bitmap depends on the
distribution of the cached data items and the cache size. The
simulations are conducted for 600–3000 KB caches and the block
size is 8 bits. The number of blocks in each level is also shown in
the Table 3. When the cache size varies from 600 to 3000 KB, the
memory usage ranges between 878 and 2208 bits. Compared with
the original bitmap scheme, saved memory amounts to 44–78%.
Although the aggregate bitmap needs to allot additional memory
for the index, an efficient bitmap search on the aggregate bitmap
is achieved.

5.2.2. Communication overhead
To evaluate the communication overhead under the condition

of different sizes of ‘‘Hello’’ packets, the simulation assumes that
the data access has no locality (i.e., the cache miss rate is 100%).
Thus, the requesting MH always obtains the data from the data



604 I.-W. Ting, Y.-K. Chang / J. Parallel Distrib. Comput. 73 (2013) 595–607
Fig. 16. Comparison of average latency under different cache sizes.

source. The source node and destination node (data source) are
randomly selected. We measure the average latencies with and
without ‘‘Hello’’ messages transferred in the network. The size of
the ‘‘Hello’’ packet is set to 50–300 bytes, based on the memory
usages shown in Table 3. The period P (5–80 s) is the time
duration between two ‘‘Hello’’ packets sent by source nodes.
The average latency for the network without ‘‘Hello’’ messages
is 131.46 ms. The average latency for the network with ‘‘Hello’’
messages varies between 131.54 and 135.36 ms. As a result, the
communication overhead does not significantly affect themessage
latency between two nodes. Assume the latencies in the networks
with and without ‘‘Hello’’ packets are Tw and To. We define the
latency increasing ratio to be (Tw−To)/To. Fig. 11 shows the latency
increasing ratios under various ‘‘Hello’’ packet sizes and periods.
The results show that the latency increasing ratio of the proposed
scheme is only 0.1–2.9%.

5.2.3. Group hit ratio
In the evaluation of the group hit ratio, five sets of parameters

with speeds of 3–15 m/s and different bitmap update intervals
(once per 5, 10, 20, 40, and 80 s) are chosen. The high group
hit ratio means the requested data can always be found in the
group if the data bit of group_bitmap is set. In GCC, the degree of
mobility (node speed) is low; the cache hit ratio is high because
the request node can take the desired data from its groupmembers
with high probability. Contrarily, if the degree of mobility is high,
the group members could move out of the request node with high
probability. The request node could not take back the cached data
from the groupmembers. Thus, the cache hit ratiowill be low. Also,
the average hop count will be long because the data is retrieved
from the farther original source node when the cache misses. As a
result, the access latency is increased too.

Fig. 12(a) shows the results for GCC with k = 1. Whenever
the bitmap update interval is remarkably short (once per 5 s) or
remarkably long (once per 80 s), and the mobility is low or high,
the group search hit ratio can reach at least 92.32%. We also run
the same experiments for GCC with k = 2 and k = 3. The results
are shown in Fig. 12(b) and (c). In extreme cases, when the bitmap
update interval is long (once per 80 s) and the node speed is 15m/s,
the group search hit ratio reaches 83.65% and 73.76% in Fig. 12(b)
(a) Cache size (KB). (b) Node join/leave rate.

(c) Zipf-like distribution (θ ) under Sc = 600 KB. (d) Zipf-like distribution (θ ) under Sc = 3000 KB.

Fig. 17. Access latency of GCC and optimized GCC. (a) Cache size Sc , (b) join/leave rate, (c) θ under Sc = 600 KB, and (d) θ under Sc = 3000 KB.



I.-W. Ting, Y.-K. Chang / J. Parallel Distrib. Comput. 73 (2013) 595–607 605
(a) Query rate under Sc = 600 KB. (b) Query rate under Sc = 3000 KB.

(c) TTL under Sc = 600 KB. (d) TTL under Sc = 3000 KB.

Fig. 18. Access latency of GCC and optimized GCC. (a) Query rate under Sc = 600 KB, (b) query rate under Sc = 3000 KB, (c) TTL under Sc = 600 KB, and (d) TTL under
Sc = 3000 KB.
and (c), respectively. The reason is that the possibility that group
members may move out of the group is high, reaching a speed of
15 m/s in 80 s. The result reveals that GCC has high group hit ratio
in most cases.

5.2.4. Cache hit ratios
The cache hit ratios include the local hit ratio, source group

hit ratio, and remote hit ratio. The local hit ratio represents the
probability of cache hits occurring in the local cache of source node.
The source group hit ratio represents the probability of cache hits
occurring in the group of source nodes in the GCC scheme. The
remote hit ratio represents the probability of cache hits occurring
in caching nodes other than the group of the source, as well as the
data source. Fig. 13 shows the cache hit ratio results under caches
sized 600–3000 KB. The local hit ratio, shown as the black bars, is
not significantly different among all schemes because the common
parameters such as cache size, data size, total data set, and data
locality are the same. In general, the local hit ratio increases along
with cache size increase. In the GCC scheme, when the group size
is large, the group hit ratios of the source also increase (shown
as the gray bars in Fig. 13). GCC with k = 3 has the highest
source group hit ratio (i.e., 43% on average for all cache sizes). The
average source group hit ratios for GCC with k = 1 and 2 are
25% and 35%, respectively. GCC also has the highest cache hit ratio
comparedwith other schemes because the intermediate nodes and
their group members can store significantly varied data items in
the group. Fig. 14 shows the cache hit ratio under various node
join/leave rates (0.05–0.4). If the node join/leave rate is high, the
cache utility (cache hit) is decreased because the newly joining
node’s cache is empty. The request node cannot take any data from
the newly joining node. However, in GCC, the entire cache of group
members is utilized for the query node. Therefore, if some group
members have moved out of the request node, the request node
may be able to take the cached data from others.

When this rate is as high as 0.4, the cache hit ratio is reduced
significantly for SimpleCache, CachePath, CacheData, NC, and ZC
schemes. The COACS, DPIP, and GCC schemes reveal better cache
hit ratios. GCC with k = 3 exhibits the highest cache hit ratio
among all the schemes.

5.2.5. Hop count
The average hop count is the average number of hops between

the source node and the node providing the response, that is,
the data source or one of the caching nodes. If the average hop
count is small, the computation and communication overheads
can be reduced when forwarding the replied data. Fig. 15 shows
the average hop counts. SimpleCache has the longest average hop
count. COACS usually redirects the data request to QDs to find
caching nodes. The hop count may be larger when the cache hit
ratio is low. DPIP and GCC have fewer hop counts (2.05–3.45) than
other schemes because the requested data is usually found in the
neighbors of the requester and intermediate nodes. In the case of
the cache size of 3000 KB, GCC with k = 2 has the smallest hop
count (2.05).



606 I.-W. Ting, Y.-K. Chang / J. Parallel Distrib. Comput. 73 (2013) 595–607
(a) GCCopt (k = 2).

(b) GCCopt (k = 3).

Fig. 19. Improved access latency ratios of GCCopt over existing caching schemes.
5.2.6. Access latency
The average access latency is the average time between the

instance the source node generates the data request and the
instance the source node receives the response. Fig. 16 shows the
average latency. The latency is affected by the hop count from the
source node to the caching node or data source, as well as the
process of data request in the data discovery phase. In the case
of Sc = 600 KB, COACS has shorter latency than others. COACS
is a cache-path-based scheme. Thus, the caching node needs to
cache the index information, but not the data. In GCC, the caching
node needs more cache size to cache data. Thus, when the cache
size is too low, GCC’s group members are expected not to provide
significant help for the cache hit ratio. The latency is increased
because the data is taken from the original data source. In the case
of Sc = 1200 KB, GCC with k = 2 has the lowest latency. When
the cache size increases, the latency decreases for all schemes. In
most cases, GCC with k = 1 has the lowest latency. GCC with
k = 3 has longer average access latency than k = 1 and 2. The
reason is that, when k is large, the number of forwarding nodes
increases in the phase of group search. GCC with k = 3 increases
the communication overhead for broadcasting in the group, and
then causes an additional latency.

5.2.7. Optimized GCC (GCCopt)
To reduce the communication overhead in group searches, we

optimize the proposed GCC using the MPR-based forwarding node
selection scheme described in Section 4.2, in which k = 2 and 3.
GCCopt with k = 1 is the same as the original GCC with k = 1.
We evaluate the average access latency of GCCopt by changing the
various parameters including the cache size, join/leave rate, Zipf
parameter θ , query rate, and TTL. Default values of parameters are
shown in Table 2. Based on our experimental results, the average
numbers of forwarding nodes in the group search for GCCopt with
k = 2 and k = 3 are 3.84 and 7.91, respectively. Fig. 17(a)
illustrates the results with the cache size varying from 600 to 3000
KB, and Fig. 17(b) illustrates the results with the cache size fixed
at 600 KB and node join/leave rates of 0.05–0.4. Fig. 17(c) and (d)
illustrate the results with Zipf parameter θ varying from 0 to 1
with the cache size fixed at 600 and 3000 KB, respectively. We
can see that GCCopt with k = 3 consistently performs best. The
performance difference between GCCopt with k = 2 and k = 3
becomes minimal when the Zipf parameter θ nears 1. When θ is
smaller, the query access pattern is similar to the uniform access
pattern. Fig. 18(a)–(d) also illustrate the access latency, with the
query rate varying from 0.05 to 1, and the TTL varying from 100
to 200 s. When the query rate is small, data traffic is light. Thus,
the access latency does not significantly depend on the query rate.
When the query rate is increased, the access latency is longer. The
weak cache consistency model is used for the cached data. If the
TTL is small, the cached data quickly becomes invalid. The caching
performance is reduced. Based on the results shown in Figs. 17 and
18, GCCopt with k = 2 and 3 obtain more access latency reduction



I.-W. Ting, Y.-K. Chang / J. Parallel Distrib. Comput. 73 (2013) 595–607 607
than the original GCC, and GCCopt with k = 3 has the lowest access
latency. The forwarding node scheme reduces the access latency.
Finally, Fig. 19 summarizes the access latency improvement ratios
of GCCopt over the existing cache schemes. For GCCopt with k = 2,
the access latency improvement can reach 15–55% over all the
existing schemes. Similarly, the access latency improvement of
GCCopt with k = 3 is 21–59% over all the existing schemes.

6. Conclusions and future work

Cooperative caching among neighbor nodes is an important
issue in MANETs because an MH can always cache a limited
number of data objects. Therefore, in this paper, we propose a
simple and efficient group-based cooperative caching to integrate
the available caching space among the group members. The
proposed scheme significantly improves the caching performance
by maintaining the cache directory in the group. GCC can easily
piggyback the bitmapped data in ‘‘Hello’’ messages. The additional
communication overhead is minor. In data discovery, the source
node and intermediate nodes can search the requested data in their
group to avoid a flooding based search. GCC has the highest cache
hit ratio compared with existing cooperative caching schemes.
Both cache placement and replacement policies consider the
mobility and status of the directory of group_bitmap. As a result,
MHs can cache more data objects and efficiently use the available
caching space of group members. In addition, GCCopt reduces the
computing overhead and uses the MPR-based forwarding node
scheme to reduce the communication overhead in the group.
Therefore, GCCopt only consumes minimal traffic overhead. The
simulation results show that the cache hit ratios, average hop
count, and access latency are the lowest compared with existing
cooperative cache schemes. In future studies, the remaining power
of group members will be considered. Adjusting the interval of
‘‘Hello’’ message dynamically is also an important issue because the
communication overhead can be reduced under different network
conditions. The evaluation will also consider heterogeneous
scenarios and dynamic data management for databases.

References

[1] C. Aggarwal, J. Wolf, P. Yu, Caching on the world wide web, IEEE Trans. Knowl.
Data Eng. 11 (1) (1999).

[2] H. Artail, H. Safa, K.Mershad, Z. Abou-Atme, N. Sulieman, COACS: a cooperative
and adaptive caching system for MANETs, IEEE Trans. Mobile Comput. 7 (8)
(2008) 961–977.

[3] L. Breslau, P. Cao, L. Fan, G. Phillips, S. Shenker, Web caching and Zipf-like
distributions: evidence and implications, Proc. IEEE INFOCOM (1999).

[4] J. Broch, D.A. Maltz, D.B. Johnson, Y.C. Hu, J. Jetcheva, A performance
comparison of multi-hop wireless ad hoc network routing protocols, in: Proc.
of ACM/IEEE Mobicom’98, 1998, pp. 85–97.

[5] T. Camp, J. Boleng, V. Davies, A survey of mobility models for ad hoc network
research, Wireless Comm. & Mobile Computing (WCMC): Special issue on
Mobile Ad Hoc Networking: Research, Trends and Applications, pp. 483–502.

[6] G. Cao, L. Yin, C.R. Das, Cooperative cache based data access framework for ad
hoc networks, IEEE Comput. (2004) 32–39.

[7] N. Chand, R.C. Joshi, M.Misra, Efficient cooperative caching in ad hoc networks
communication system software and middleware, in: First International
Conference on Comsware, Jan. 2006, pp. 1–8.

[8] G.-M. Chiu, C.-R. Young, Exploiting in-zone broadcasts for cache sharing in
mobile ad hoc networks, IEEE Trans. Mobile Comput. 8 (3) (2009).

[9] J. Cho, S. Oh, J. Kim, H. Ho Lee, J. Lee, Neighbor caching in multi-hop wireless
ad hoc networks, IEEE Commun. Lett. 7 (11) (2003) 525–527.
[10] C.-Y. Chow, H.-V. Leong, A. Chan, Peer-to-peer cooperative caching in mobile
environments, in: Intl. Conf. on Distributed Computing Systems Workshop,
2004.

[11] K. Fall, K. Varadhan, The NS2manual, the VINT Project, Apr. 2002. http://www.
isi.edu/nsnam/ns/.

[12] L. Fan, P. Cao, J. Almeida, A.Z. Broder, Summary cache: a scalablewide areaweb
cache sharing protocol, in: Proc. ACM SIGCOMM, 1998, pp. 254–265.

[13] T. Hara, Effective replica allocation in ad hoc networks for improving data
accessibility, in: Proc. IEEE INFOCOM 2001, pp. 1568–1576.

[14] T. Hara, Replica allocation methods in ad hoc networks with data update,
Mobile Netw. Appl. 8 (2003) 343–354.

[15] C. Imrich, M. Conti, J. Liu, Mobile Ad Hoc Networking: Imperatives and
Challenges, in: Ad Hoc Networks, vol. 1, 2003, pp. 13–64.

[16] W.H.O. Lau, M. Kumar, S. Venkatesh, A cooperative cache architecture in
supporting caching multimedia objects in MANETs, in: Fifth Int’l Workshop
Wireless Mobile Multimedia, 2002.

[17] S. Lim, W.-C. Lee, G. Cao, C.-R. Das, A novel caching scheme for Internet-
based mobile ad hoc networks, in: Proc. IEEE Int’l Conf. Computer Comm. and
Networks, ICCCN, IEEE Press, 2003, pp. 38–43.

[18] S.-Y. Ni, Y.-C. Tseng, J.-P. Sheu, The broadcast storm problem in a mobile
ad hoc network, in: Int’l Conf. on Mobile Computing and Networking, 1999,
pp. 151–162.

[19] M. Papadopouli, H. Schulzrinne, Effects of power conservation, wireless
coverage and cooperation on data dissemination among mobile devices,
in: Proc. MobiHoc, ACM Press, 2001, pp. 117–127.

[20] C. Perkins, E. Belding-Royer, I. Chakeres, Ad hoc on demand distance vector
(AODV) routing, IETF Internet draft, draft-perkins-manet-aodvbis-00.txt, Oct.
2003.

[21] A. Qayyum, L. Viennot, A. Laouiti, Multipoint relaying for Flooding broadcast
messages in mobile wireless networks, in: Proceedings of the 35th Annual
Hawaii International Conference on System Sciences, HICSS’02, Hawaii, 2002.

[22] A. Rousskov, D. Wessels, Cache digests, Comput. Netw. ISDN Syst. 30 (1998)
2155–2168.

[23] F. Sailhan, V. Issarny, Cooperative caching in ad hoc networks, in: International
Conference on Mobile Data Management, MDM, 2003, pp. 13–28.

[24] J. Shim, P. Scheuermann, R. Vingralek, Proxy cache algorithms: design,
implementation, and performance, IEEE Trans. Knowl. Data Eng. 11 (4) (1999).

[25] Yi-Wei Ting, Yeim-Kuan Chang, A novel cooperative caching scheme for
wireless ad hoc networks: groupcaching, in: International Conference on
Networking, Architecture, and Storage, NAS 2007, pp. 62–68.

[26] D. Wessels, K. Claffy, ICP and the squid web cache, IEEE J. Sel. Areas Commun.
(1998) 345–357.

[27] L. Yin, G. Cao, Supporting cooperative caching in ad hoc networks, IEEE
INFOCOM (2004) 2537–2547.

[28] L. Yin, G. Cao, Supporting cooperative caching in ad hoc networks, IEEE Trans.
Mobile Comput. 5 (1) (2006) 77–89.

I-Wei Ting received his MS in Computer Science and
Information Engineering from Chaoyang University of
Technology, Taiwan, R.O.C., in 2004. He is currently work-
ing toward his PhD in Computer Science and Information
Engineering at National Cheng Kung University, Taiwan,
R.O.C. His current research interests include cache design
systems, cooperative caching, and broadcasting strategy.

Yeim-Kuan Chang received his MS in Computer Science
from the University of Houston at Clear Lake in 1990 and
his PhD in Computer Science from Texas A&M University,
College Station, Texas, in 1995. He is currently a Professor
in the Department of Computer Science and Information
Engineering at National Cheng Kung University, Tainan,
Taiwan, Republic of China. His research interests include
computer architecture, multiprocessor systems, Internet
router design, and computer networking.

http://www.isi.edu/nsnam/ns/
http://www.isi.edu/nsnam/ns/
http://www.isi.edu/nsnam/ns/
http://www.isi.edu/nsnam/ns/
http://www.isi.edu/nsnam/ns/
http://www.isi.edu/nsnam/ns/

	Improved group-based cooperative caching scheme for mobile ad hoc networks
	Introduction
	Related work
	The proposed group-based cooperative caching scheme
	Assumption and definition
	Maintaining a directory using a bitmap
	Data discovery process
	Cache placement and replacement algorithm
	Mobility effect
	Cache consistency issue

	Optimized GCC
	Aggregate bitmap
	Forwarding node selection scheme

	Performance evaluation
	The simulation model and environment
	Simulation results
	Memory usage
	Communication overhead
	Group hit ratio
	Cache hit ratios
	Hop count
	Access latency
	Optimized GCC ( GCCopt )


	Conclusions and future work
	References


